Scott Danielsen
Segalman Lab, Fredrickson Lab

I utilize electrostatic interactions to assemble hierarchical structures of functional polymers in solutions, soft solids, and gels. As part of this research effort, I seek to understand both the parameters that tune the hierarchical assembly and the effects of the electrostatic assembly on the resulting optoelectronic properties of the soft, conductive materials.

Tools & Techniques: X-ray, neutron, & light scattering, microscopy, optical spectroscopies, electrochemical impedance spectroscopy, polymer synthesis, density functional theory, field theoretic simulations


Thomas Farmer
Doherty Lab, Chmelka Lab
Rich Hermann
Gordon Lab

My work is in the field of tip-enhanced near-field optical microscopy (TENOM), also known as tip-enhanced Raman spectroscopy (TERS). This technique focuses radiation in the UV-Vis-IR range to nanoscale spatial dimensions, much smaller than the diffraction limit of a conventional microscope, using plasmonic antennas. TENOM experiments have achieved spatial resolutions of 1-10 nm, and can reach high enough sensitivities for single molecule spectroscopy measurements. My research has included the design and validation of a custom-built TENOM instrument, and the use of Lumerical optical simulation FDTD software to investigate the physics of plasmonic nanostructures.

I grew up in Minnesota and received a dual degree in Chemical Engineering and Chemistry from the University of Minnesota. During college, I did research in the field of renewable heterogeneous catalysis, worked as an usher at the Twins baseball stadium, and played in the drumline for basketball and volleyball games. I started at UCSB in 2013 and love being able to now play golf year-round.

Tools and Techniques: optical microscopy and spectroscopy, lasers, plasmonics, scanning probe microscopies including AFM/STM/TENOM, LABVIEW, optical simulations (Lumerical FDTD)

Jimmy Liu
Fredrickson Lab

My research aims to enable fast and accurate simulations of polymer systems by coarse-graining. There are well-known methods for coarse-graining particle-based models, but what about field theories? We developed a new method, phase field mapping, that systematically produces a fast and accurate phase field model using the output of short self-consistent field theory calculations. These field theories are ideal for describing dense polymer systems at near-atomistic scales, since simulations become more efficient as the density increases.

I grew up in Edmonton, Alberta, Canada, and moved to New York for high school and college. I have a B.S. in chemical engineering from Cornell University, where I earned a red belt in sport taekwondo. Outside of research, I enjoy cycling, and playing the piano and guitar.

Tools & Techniques: polymer field theory, statistical mechanics, simulation (especially pseudo-spectral and finite difference methods), Python, MATLAB, Mathematica, C++

Alex Schrader
Israelachvili Lab, Han Lab
Mengwen Zhang
Helgeson Lab, Mitragotri Lab