The O'Malley Lab works at the interface of engineering and biology to engineer microbes and consortia with novel functions. We are especially interested in deciphering how “unwieldy” microbes in the environment perform extraordinary tasks - many of these microbes have no available genomic sequence and are exceptionally difficult to manipulate. We seek a better understanding of how proteins are synthesized by cells, and how their three-dimensional structure informs their function would enhance our ability to engineer proteins (and cellular expression platforms) for diverse biomedical and biotechnology applications. To address these issues, our approach combines classical cell biology tools with cutting-edge technologies (genome sequencing, RNAseq, cellular reprogramming) that are rooted in the core biological sciences to interrogate and engineer molecular mechanisms that underlie protein production in eukaryotic cells. In addition, we rely on biophysical methods to elucidate protein-protein contacts, with the aim of controlling these interactions both in vivo and in vitro. Systems of interest to us have broad applicability to bioenergy and sustainability, as well as to drug development and detection.
Areas of interest:
- Genetic and cellular engineering of anaerobic gut fungi
- Synthetic anaerobic consortia for bioproduction and model development
- Engineering synthetic fungal cellulosomes and novel biocatalysts
- Membrane proteins for drug discovery, detection, and diagnostics
- New membrane proteins for synthetic biology