Nolan Anderson
Nolan Anderson
Mukherjee Lab

I strive to expand the toolkit for anaerobic cellular imaging. In particular, I engineer LOV (light-, oxygen-, voltage-sensing) proteins for lower toxicity, increased brightness, and an expanded color palette. Improvements in these areas can help bring the power of fluorescent imaging to low-oxygen systems previously inaccessible to oxygen-dependent fluorescent sensors (e.g. Green Fluorescent Protein), such as the mammalian gut or solid tumor cores.

I am from Louisville, Kentucky, and graduated from the University of Kentucky in 2017 with a BS in Chemical Engineering and a BS in Mathematics. At Kentucky, I studied substrate binding in starch- and cellulose-degrading proteins. Outside my research, my interests include swimming, water polo, hiking, trombone, and cooking.

Tools and Techniques: protein engineering, cloning, molecular dynamics, fluorescence microscopy, fluorescence-activated cell sorting (FACS)

Chithra Asokan
Chithra Asokan
Christopher Lab
Anirudha Banerjee
Anirudha Banerjee
Squires Lab
Tsatsral Battsengel
Tsatsral Battsengel
Chmelka Lab
Alexandra Bayles
Alexandra Bayles
Helgeson Lab, Squires Lab
Shona Becwar
Shona Becwar
Chmelka Lab, Han Lab

I am investigating the synthesis and optimization of non-precious metal heteroatom-containing porous carbon materials. These conductive graphitic materials have proven to be both comparable to industrially employed oxygen reduction reaction catalyzing material in fuel cells, and promising grey water filtration materials. Additionally, I am investigating the structuring of conductive polymers for use in solar panel like applications.

I am from Scottsdale, AZ, and originally from Corpus Christi, TX. I graduated from Arizona State University in 2016 with a BSE in Chemical Engineering.  I interned as a materials research engineer at the Boeing Co. where I discovered my interest in pursuing a PhD. Outside of research I enjoy the beach, spending time in down town Santa Barbara, fishing, archery, skeet/trap, and trying new restaurants or bar with friends.

Tools and Techniques: Nitrogen sorption, Thermogravimetric analysis (MS), Electron Paramagnetic Resonance, Solid State Nuclear Magnetic Resonance, X-ray photoelectron spectroscopy, Wide and Small angle X-ray diffraction, graphitic carbon and porous silica (SBA-15) synthesis.

Maxwell Berkow
Maxwell Berkow
Chmelka Lab
Zachariah Berkson
Zachariah Berkson
Chmelka Lab, Israelachvili Lab
Jennifer Brown
Jennifer Brown
O'Malley Lab
Michael Burroughs
Michael Burroughs
Helgeson Lab, Leal Lab

In my research, I am investigating how entangled polymeric liquids behave under flow.

I was born and raised in the great state of NC. I received my undergraduate degree in chemical engineering from North Carolina State University in 2015 (Go Pack!). During college, I played alto saxophone in the marching and pep bands, worked various positions within University Housing, and conducted undergrad research in the areas of nanofibers and polymer hydrogels. 

Outside of the lab, I enjoy hiking, cooking, attending live music performances, and exploring Santa Barbara.

Tools and Techniques: Rheology, particle tracking, microscopy, light scattering, and magnetic resonance imaging

 

Lesley Chan
Lesley Chan
Gordon Lab

My research involves developing scalable, colloid-based processing methods for (1) bio-inspired anti-reflective surfaces for IR devices and visible LEDs, (2) next generation solution-assembled micro/nanoscale III-nitride LEDs, and (3) 2-D strain relaxed epitaxial growth templates for red and green emitting III-nitride devices. 

I am from Los Angeles, CA and completed my B.S. in chemical engineering at the University of Southern California.  Outside of research, I enjoy camping, traveling, cooking, and live music.

Tools and Techniques: Cleanroom processing, characterization (SEM, PL, CL, UV-Vis-NIR, FTIR, XRD, EDS, ellipsometry), optical simulation (FDTD - Lumerical, ray tracing - LightTools), Langmuir-Blodgett deposition

 

 Chih-Cheng (Peter) Chang
Chih-Cheng (Peter) Chang
Squires Lab
Szu-Ying (Sandy) Chen
Szu-Ying (Sandy) Chen
Israelachvili Lab
Alex Chialastri
Alex Chialastri
Dey Lab

In my research, I am generating novel single-cell sequencing techniques, including the sequencing of epigenetic marks like 5mC and 5hmC.  These techniques can be used to quantify cell to cell heterogeneity in a sample, and are currently being used to understand early mouse embryogenesis.

I am from Philadelphia, PA and did a joint BS/MS program in chemical engineering at Drexel University.  There I was a NCAA Division I swimmer and held three 6-month long internships at Merck, Dow Chemical, and Neutrogena.  Outside of research, I enjoy playing Super Smash Bros. Melee, and learning new skills.  Most recently, I have been trying to master throwing a boomerang.

Tools & Techniques: Single-cell/Low Input DNA & RNA Sequencing, Epigenetic Sequencing, Lineage Tracing, Perl, & Bioinformatics

 

Patrick Corona
Patrick Corona
Helgeson Lab, Leal Lab

In my research, I am developing in situ small-angle neutron scattering techniques for measuring the microstructure of soft materials (e.g. colloids and polymers) in flow.

Originally from Cincinnati, OH; I received my undergraduate chemical engineering degree from University of Illinois at Urbana-Champaign. Outside of research I enjoy bowling, playing tennis, and cooking.

Tools & Techniques: small-angle neutron scattering, computational fluid dynamics (COMSOL + OpenFOAM), rheology
 

Scott Danielsen
Scott Danielsen
Segalman Lab, Fredrickson Lab

I utilize electrostatic interactions to assemble hierarchical structures of functional polymers in solutions, soft solids, and gels. As part of this research effort, I seek to understand both the parameters that tune the hierarchical assembly and the effects of the electrostatic assembly on the resulting optoelectronic properties of the soft, conductive materials.

Tools & Techniques: X-ray, neutron, & light scattering, microscopy, optical spectroscopies, electrochemical impedance spectroscopy, polymer synthesis, density functional theory, field theoretic simulations

 

George Degen
George Degen
Israelachvili Lab, Shea Lab
Audra Destefano
Audra Destefano
Howard Dobbs
Howard Dobbs
Chmelka Lab, Israelachvili Lab
Kang-Ching Fan
Kang-Ching Fan
Mukherjee Lab

 

I am exploring the use of LOV (light-, oxygen-, voltage-sensing) fluorescent proteins as scaffolds to build genetically encodable biosensors to visualize cellular chemicals (e.g. ATP, cyclic AMP, protease) in low-oxygen environments. Such biosensors are promising tools for studying the cell biology of anaerobes that are previously not well-understood using traditional green fluorescent proteins (GFPs).

I came from Taipei, Taiwan, and graduated from National Taiwan University (NTU) in 2015 with a BS in Chemical Engineering. During college, I studied the thermophoresis phenomenon of lipid molecules using supported lipid bilayer (SLB) as a platform. Outside of the lab, I enjoy hiking, biking, playing the piano, and cooking.

Tools and Techniques: protein engineering, fluorescence microscopy, fluorescence-activated cell sorting (FACS), fluorescence recovery after photobleaching (FRAP), imaging processing, microfluidics

 

Scott Fenton
Scott Fenton
Helgeson Lab
Julia Fisher
Julia Fisher
Squires Lab

I am advised by Todd Squires and am currently focusing on the mechanical properties and morphology of lung surfactant monolayers in response to an array of conditions hypothesized to play a role in lung surfactant inactivation. I am using microbutton microrheology techniques developed in the Squires group to probe the mechanical properties of the surfactant monolayer on an aqueous interface in tandem with fluorescence microscopy to study the evolution of the surfactant morphology.

I received my undergraduate degree in chemical engineering from Arizona State University in 2015. In my time there, my undergraduate research focused on the understanding Mg-Al alloy corrosion and designing a method for corrosion protection. One of my most enjoyable experiences there was interning in both the personal care and home care divisions in the R&D department in Henkel Consumer Goods, Inc. Outside of the workplace, I really enjoy baking treats and making candy; as a true Ohio native, buckeyes are one of my favorite candies and I do my best to share them with the department as often as I can! I also really enjoy playing softball and going to the local batting cages.

Tools & Techniques: microbutton microrheology, fluorescence microscopy, SAXS, transient UV-vis, NMR

Jan Garcia
Jan Garcia
Fredrickson Lab

I use phase field simulations to study how polymer membranes are formed using phase inversion processes. 

I am Filipino-Canadian: born and raised in the Philippines, finished high school in Winnipeg, Manitoba, and completed my BSc and MSc at the University of Alberta. My previous research areas include carbon capture, solar energy, and oil sands processing. I play basketball, table tennis, and the ukulele.

Tools and Techniques: I am one of the developers of the Fredrickson group's phase field simulation software. Our software can simulate fluid systems with different thermodynamic, mobility, and viscosity models using GPUs for fast parallel processing. I use the following languages and tools for my work: C++, Python, Bash, git.

 

Chung-ta Han
Chung-ta Han
Han Lab
Dakota Hanemann-Rawlings
Dakota Hanemann-Rawlings
Segalman Lab, Chabinyc Lab
Kellie Heom
Kellie Heom
Jun Hee Jang
Jun Hee Jang
Abu-Omar Lab
Seamus Jones
Seamus Jones
Segalman Lab, Fredrickson Lab
Kartik Kamat
Kartik Kamat
Peters Lab
Kimberlee Keithley
Kimberlee Keithley
Salman Khan
Salman Khan
Peters Lab, Scott Lab
Vikram Khanna
Vikram Khanna
Doherty Lab
Pratyush Kumar
Pratyush Kumar
Rawlings Lab
Christopher Kuo-Leblanc
Christopher Kuo-Leblanc
Patrick Leggieri
Patrick Leggieri
Ryan Ley
Ryan Ley
Gordon Lab, DenBaars Lab

I study Gallium Nitride (GaN) based semiconductors for display applications. My research focuses on designing and fabricating microLEDs for high efficiency active pixels. I also work on nanostructuring GaN thin films to improve material properties for long wavelength (yellow, red) emission.

Tools and Techniques: Semiconductor device testing, wirebonding, LED packaging, thin film XRD, AFM, SEM, CL, lasers, Langmuir-Blodgett, clean room processing including photolilthography (stepper and contact aligner), electron beam deposition, ion beam deposition, plasma etching and ALD.

Daniel Mamerow
Daniel Mamerow
Soh Lab
Jonathan Martin
Jonathan Martin
Fredrickson Lab
Koty McAllister
Koty McAllister
Rawlings Lab
Samantha McCuskey
Samantha McCuskey
Segalman Lab, Bazan Lab
Jacob Monroe
Jacob Monroe
Shell Lab

In my research, I utilize theory and molecular dynamics simulation to understand how water mediates interactions between solutes. I am determining how to use various metrics based on water structure near solutes to predict thermodynamic signatures of solvation or association. This work will eventually help to design peptidic materials or other materials with heterogeneous patterns on a sub-nanometer length scale.

When I’m not working, I enjoy running and practicing violin. In the past, I’ve played with the UCSB orchestra and currently play with a community orchestra that sight-reads music once a month.

Tools & Techniques: molecular dynamics simulation, statistical mechanics, free energy calculations, stochastic algorithms development

Hyunjin Moon
Hyunjin Moon
Scott Lab

My research is focused on synthesizing mesoporous materials which have a different degree of surface polarity and understanding of their surface characteristics. The findings can be applied for optimized biomass conversion. 

I am from Busan, Korea, and did my B.S. and M.S. programs in mechanical engineering at Korea Advanced Institute of Science and Technology (KAIST) and Seoul National University. During the master course, my research interest was designing nanomaterial-based wearable electronics. I enjoy various sports, such as table tennis, boxing and bowling. 

Tools & Techniques: XRD, TGA, NMR, FT-IR, EPR, Fluorimeter.

My Nguyen
My Nguyen
Tuan Nguyen
Tuan Nguyen
Helgeson Lab

In my research, I’m developing processing strategies for gels formed through the thermoreversible assembly of nanoscale emulsions. Along the way, I’d like to understand the underlying colloidal phase behavior that leads to the system’s gelation. My goal is to use these gels as a template to form hierarchically structured soft materials for use in artificial biomaterials and consumer products.

Outside of my research, I enjoy playing board games, camping, and sleeping. My current favorite board game is Pandemic, and my most recent camping trip was to Glacier National Park.

Tools & Techniques: Rheometer, Microscope, Dynamic Light Scattering, High Pressure Homogenization

Clarke Palmer
Clarke Palmer
McFarland Lab

In my research, I am using high-temperature molten metal environments to pyrolyze methane into molecular hydrogen and solid carbon. Unlike heterogeneous catalysis, the solid carbon formed floats to the surface of the liquid metal where it can be readily removed, preventing deactivation of the catalytic melt. The overall goal is to engineer a cost-competitive, CO2-free pathway for the production of industrial hydrogen.

I am from Watertown, CT and received my BS in Chemical and Biomolecular Engineering from the University of Connecticut. Outside of research, I enjoy playing board games or going to the bar with friends.

Tools & Techniques: High-pressure and high-temperature reactor fabrication, differentially-pumped mass spectrometry, catalyst synthesis and preparation, carbon characterization, and gas chromatography.

 

Joseph Peterson
Joseph Peterson
Leal Lab, Fredrickson Lab
Igor Podolsky
Igor Podolsky
O'Malley Lab
David Podorefsky
David Podorefsky
Geoffrey Poon
Geoffrey Poon
Peters Lab
Abe Pressman
Abe Pressman
Chen Lab (Chemistry)

I like to describe my research as "playing Pokémon": I take large populations of molecular entities, compete them against each other over and over again until the winners evolve into more powerful forms, then convert them into digital information and email them to a bunch of professors. More broadly speaking, I look at the kinetics of evolutionary spaces as a model system for biochemical engineering.

Outside of research, I recently participated in the winning 2017 Dance Your PhD video, and I run a graduate student a capella group.

Tools & Techniques: cytometry, in vitro selection, FACS, HTS, PCR (ePCR, qPCR, RTPCR), watercolors, programming (Python, Java, miscellaneous, liquid-handling-robot, basic cable), trompe l'oeil, stage hypnosis.

Nathan Prisco
Nathan Prisco
Chmelka Lab
Ji Qi
Ji Qi
Christopher Lab
Dennis Robinson Brown
Dennis Robinson Brown
Tanmoy Sanyal
Tanmoy Sanyal
Shell Lab
Michael Schmithorst
Michael Schmithorst
Pavel Shapturenka
Pavel Shapturenka
Gordon Lab, DenBaars Lab

My research involves leveraging nanopatterning techniques to enhance the efficiency and versatility of III-nitride (specifically gallium, indium, and aluminum nitride) light emitting diodes and enable scalable device processing. Much of my work happens in the UCSB Nanofab, interspersed with some epitaxial thin film growth via metal-organic chemical vapor deposition. I'm also interested in surface science and soft matter systems, which hold great potential for high-throughput functional material processing.

I was born in Minsk, Belarus and was raised in Brooklyn, New York. I received by bachelor's degree in chemical engineering through the CUNY Macaulay Honors College at The City College of New York (CCNY) while doing research under the guidance of Drs. Ilona Kretzschmar and John Lombardi. I also played Division III tennis at CCNY for three years. I'm making an effort to maintain my tennis game well into the graduate student life, and am getting back into basketball after a fifteen-year hiatus. My other hobbies include learning guitar and reading (no research articles, I promise!).

Tools & Techniques: Thin Film Deposition, Characterization (electron microscopy, ellipsometry, XRD, electrical), and Processing (nanofab, wet chemistry), Colloidal Patterning, Surface Functionalization and Characterization, Optical Simulation

Nicholas Sherck
Nicholas Sherck
Shell Lab, Fredrickson Lab
Tanvi Sheth
Tanvi Sheth
Helgeson Lab
David Smith
David Smith
Mitragotri Lab, Leal Lab, Shell Lab

My research focuses on a joint molecular simulation and continuum theoretical platform for elucidating the design-specific effects of 1-10 nm nanoparticles in their interactions with model cellular membranes. We leverage molecular dynamics simulations, free energy calculations, and simple models to delineate the structural states, thermodynamic driving forces, and kinetic pathways of lipid membrane interactions for nanoparticles of diverse size, surface chemistry, shape, softness, and surface roughness and topology. We believe the predictive principles that result from these detailed simulations and adapted theories will be crucial to overcome the present spatiotemporal limitations of experiments and existing theories and guide forthcoming nanoparticle regulations and pharmaceutical and consumer product technologies.

Outside of my research, I enjoy running, biking, hiking, reading about geography or economics at a coffee shop or at the beach, wandering around cities, and spending time with my long-time girlfriend Carla and French Bulldog Butters. I’m a proud Greater Philadelphian and East Coaster.

Tools & Techniques: molecular dynamics simulation (equilibrium and nonequilibrium), coding (Python, FORTRAN, Bash, MATLAB, some C++), high performance computing, free energy calculations & advanced sampling (e.g. umbrella sampling), membrane & peptide biophysics, multiscale modeling, molecular thermodynamics

 

Michael Spears
Michael Spears
Candice Swift
Candice Swift
O'Malley Lab
Craig Vandervelden
Craig Vandervelden
Peters Lab
Michael Vigers
Michael Vigers
Han Lab, O'Malley Lab
Daniel Vigil
Daniel Vigil
Fredrickson Lab
Chad Wangsanuwat
Chad Wangsanuwat
Dey Lab

Chad hails to sunny California from Bangkok, Thailand. Chad is currently working in the Dey lab focusing on lineage tracing methods and algorithms. Apart from working in the lab, he can be found watching TV shows, listening to k-pop, and complaining about how California is somehow cold. Just to not be too predictable, Chad’s favorite food is Japanese food, although Thai food comes as a close second.

Tools & Techniques: DNA & RNA sequencing, Epigenetic Sequencing, & Lineage Tracing 

 

St. Elmo Wilken
St. Elmo Wilken
O'Malley Lab, Petzold Lab
Ryan Yappert
Ryan Yappert
Peters Lab
(George) Guangzhao, Yin
(George) Guangzhao Yin
Christopher Lab
Justin Yoo
Justin Yoo
O'Malley Lab, Daugherty Lab
Beihang Yu
Beihang Yu
Segalman Lab

In my research, I am utilizing polypeptoids to study the role of chain shape in block copolymer self-assembly, looking at how chain shape impacts the thermodynamic interacitons and self-assembled structures of diblock copolymers.

I grew up in Hangzhou, China, and graduated from Tsinghua University with a B.Eng. in Polymer Materials and Engineering and a B.A. in English Language (second major). I did my thesis project in Prof. Yanbin Huang's lab on drug–polymer crystalline inclusion complexes, and in the summer of 2015, I worked with Alex Briseño at UMass-Amherst on small molecules and oligomers for semiconductors. I love playing volleyball (looking for volleyball buddies!) and also enjoy cooking in my free time.

Tools & Techniques: Basic polymer synthesis and characterization (GPC, DSC, NMR, LC-MS, MALDI etc.), TEM, and (Cryo) Microtoming.

Gregory Zakem
Gregory Zakem
Christopher Lab
Jiamin Zhang
Jiamin Zhang
Helgeson Lab, Leal Lab

My research is in the field of rheology, which studies the physics of complex fluids. More specifically, for my project, the goal is to develop and experimentally test a rheological model for wormlike micelles that is able to reflect their underlying structure. Wormlike micelles are ubiquitous in consumer products, such as shampoo and body wash. We use rheological measurements to study how fluid stress responds to flow and use small angle neutron scattering to probe the microstructures. 

I grew up in Jinan, China and came to the US for junior and senior years of high school as an exchange student in Atlanta, GA. I went to Cornell University for undergraduate program in chemical engineering. Outside of research, I enjoy hiking, cooking, badminton, tennis, and singing. 

Tools & Techniques: rheology, neutron scattering, computational fluid dynamics simulations

Yuanyi (Alex) Zhang
Yuanyi (Alex) Zhang
Segalman Lab